Motor Protection

- 3-phase motors
- Induction motors
 - line fed
- Adjustable Speed Drives
 - Drive has own protection
- Synchronous motors
 - Protection scheme mostly similar to synch generator
Induction motor circuit

Standard positive sequence equivalent circuit

Protection based on thermal limits

Negative seq.
Startup ($s = 1$)

Rotor current frequency = stator frequency

- Heating from I^2R in rotor

- Higher R at startup
- Higher current at startup
- Start up (or stall)
- No cooling
- Inertia impacts starting time
- Acceleration \rightarrow heating
- Less cooling at start up
Modern motor relay have thermal models for motors

2 thermal models

1) Startup / locked rotor model
 - uses measured current
 - If $I_i > 2.5 \times I_{nom}$ changes to this model
 u — temperature rise above ambient

 - heat dissipation (rejected by cooling)
 - open at startup

 ![Diagram of heat source and heat storage capacity]
Start up

\[\frac{R_1}{R_0} (I_1^2 + I_2^2) \]

\[\text{pos} \quad \text{neg} \]

\[\frac{R_1}{R_0} \]

\[R_r \equiv \text{rotor resistance under start up} \]

\[R_o \equiv \text{Rotor resistance at rated speed} \]
plot of u vs time for normal start up

Switch models when $L < 2.5$ mm
Run model

\[I_2^2 (T_A - T_0) \]

Threshold

\[I_2 \]

assuming an effect of \(I_2 \) on heating

\[\frac{z_2^2 + 5I_2^2}{I_2} \]
Other concerns with motor protection

- faults
 - in the motor itself
- on the system
 - voltage sag
 - draws more current
 - slow down
 - stalls
- motor bus transfer
- power system impact of higher Q draw
Actual - Fault Induced Delayed Voltage Recovery FIDVR
Fast Bus (<1 cycle) Transfer (static transfer)

- In phase Transfer
- Residual voltage Transfer ≤ 30%

Bus Tie Breaker