Typical Distribution Systems

- Passive
 - System distributes power to loads
 - Unidirectional power flow
- Overcurrent relaying
 - Coordinated with fuses
- Voltage regulation fairly simple
 - Controlled at substation

Distributed Generation Protection

- What is DG (or DR)?
 - Synchronous generators
 - Induction generators
 - Power electronically coupled generators
 - Connected to distribution circuit
 - Typically less than 5MVA (some bigger approaching 10MVA)
 - Supply owners load, not rest of circuit
- Connection similar to a load
Impacts

- Addition voltage source not provided from substation
 - Fault current source
 - Backfeed to other circuits
 - Impact voltage regulation
- Restoration of feeder after outage
- Power quality

IEEE Standards

- IEEE 1547-2003: Standard for Interconnecting Distributed Resources with Electrical Systems
 - Amendment 1, 2014
- 1547.1: Conformance test procedures
- 1547.2: Application Guide for 1547
- 1547.3: Guide for monitoring, information exchange and control
IEEE Standards

- IEEE 1547.4: Guide for design, operation and integration of DR Island Systems
- IEEE 1547.6: Interconnecting Distributed Resources with Electric Power Systems Distribution Secondary Networks
- IEEE 1547.7: Conducting DR Impact Studies
- IEEE 1547.8 (draft): Supplemental support for implementation strategies for expanded use of IEEE 1547

Protection Considerations

- IEEE 1547-2003: Standard for Interconnecting Distributed Resources with Electrical Systems
 » Defines protection at PCC/POI, not generator
 » Disconnect for voltages outside of range
 » Disconnect for frequencies out of range
 » Stay disconnected until feeder restored
Protection Considerations

- IEEE 1547-2003: continued
 - Voltage magnitude fluctuation on synchronization < 5%
 - Detect unintentional islanding
 - DG doesn’t cause overvoltages
 - DG doesn’t cause miscoordination of protection
 - Disconnect for faults on feeder

Utility perspective

- Protect system from DG
- 51P/51G impacts
- Coordinate with DG protection for facility faults
- Transfer trip (if necessary—more likely with higher ratings)
- Don’t reclose with DG connected
Utility perspective: Back feed issues

- Downstream loads see larger currents
- Transfer trip to avoid having it feed faults
- Directional protection
- Communication aided protection

DG owner perspective

- Protect generator from grid
- Stay connected while meeting IEEE 1547
- Disconnect from utility for system level disturbances and supply on site loads
- Minimum set of standard generator protection
1547 requirements

- Sense VLL on feeder side of PCC/POI
 - Overvoltage (59)
 - Undervoltage (27)
 - Specific clearing time
- Disconnect for frequencies out of range
 - 810 and 81U

- Stay disconnected until voltage on feeder between 88% and 110%
 - And frequency 59.3-60.5 Hz
 - Both for 5 minutes
- Detect unintentional island
 - Disconnect within 2 sec
- Difficult as DG gets large relative to load
Transfer Trip (ANSI 25)

- From Utility to DG
- Comms
 » Radio
 » Direct Fiber
 » Telecom
 » Data network