Illustration of HW #2

Zone 1
Relay A: \(X_{A-21} = 65\% \), \(|Z_{21}| = 65\% \), \(4 \angle 32^\circ = 2.6 \Omega \)
\(R_{A-21} = 8 X_{A-21} = 20.8 \Omega \)
Relay B: \(X_{B-21} = 2.6 \Omega \), \(R_{B-21} = 20.8 \Omega \)

Zone 2
Relay A: \(X_{A-22} = 1.4 \), \(|Z_{22}| = 1.4 \times 4 = 5.6 \Omega \)
\(R_{A-22} = 2 X_{A-22} = 11.2 \Omega \)
Relay B: \(X_{B-22} = 5.6 \Omega \), \(R_{B-22} = 11.2 \Omega \)
B. \[T = \frac{I_{OF}}{I_{ORELAY}} \]

\(I_{OF} \): zero sequence of total fault current

\(I_{ORELAY} \): For Relay A
 use \(I_{OL} \)
 For Relay B, use \(I_{OR} \)

\[0 \leq m \leq 1 \]
\[k_0 = \frac{Z_{L0} - Z_{L1}}{3 Z_{L1}} \]
\[I = I_A + k_0 \cdot 3 I_0 \]

\[V_{ph} \] — phase A voltage of the Relay
\[I_{pol} = 3 \cdot I_0 \]

\[m = 0, 20\%, 40\%, 60\%, 80\%, 100\% \]
2.

For Relay A: \(Z_{2, \text{relay}A} = (1.1 \sim 1.2) |Z_{21}| \)
Relay B: \(Z_{2, \text{relay}B} = (1.1 \sim 1.2) |Z_{21}| \)

Zone 3
For Relay A: (If \(Z_{2, \text{relay}B} = 1.2 |Z_{21}| \), \(Z_{3, \text{relay}A} = 0.3 |Z_{21}| \))
For Relay B: (If \(Z_{2, \text{relay}A} = 1.1 |Z_{21}| \), \(Z_{3, \text{relay}B} = -0.2 |Z_{21}| \))